MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. EN 1.7362 Steel

C86700 bronze belongs to the copper alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
21 to 22
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
74
Tensile Strength: Ultimate (UTS), MPa 630
510 to 600
Tensile Strength: Yield (Proof), MPa 250
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Maximum Temperature: Mechanical, °C 130
510
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 89
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 19
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.8
Embodied Energy, MJ/kg 49
23
Embodied Water, L/kg 340
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 290
100 to 340
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
18 to 21
Strength to Weight: Bending, points 21
18 to 20
Thermal Diffusivity, mm2/s 28
11
Thermal Shock Resistance, points 21
14 to 17

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 55 to 60
0 to 0.3
Iron (Fe), % 1.0 to 3.0
91.5 to 95.2
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 1.0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 30 to 38
0
Residuals, % 0 to 1.0
0