MakeItFrom.com
Menu (ESC)

C86700 Bronze vs. EN 1.7729 Steel

C86700 bronze belongs to the copper alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86700 bronze and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
17
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 630
910
Tensile Strength: Yield (Proof), MPa 250
750

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
430
Melting Completion (Liquidus), °C 880
1470
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 89
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.3
Embodied Energy, MJ/kg 49
49
Embodied Water, L/kg 340
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
150
Resilience: Unit (Modulus of Resilience), kJ/m3 290
1500
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 21
27
Thermal Diffusivity, mm2/s 28
11
Thermal Shock Resistance, points 21
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 3.0
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 55 to 60
0 to 0.2
Iron (Fe), % 1.0 to 3.0
94.8 to 97
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.5
0 to 0.020
Titanium (Ti), % 0
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 30 to 38
0
Residuals, % 0 to 1.0
0