MakeItFrom.com
Menu (ESC)

C87300 Bronze vs. EN 1.4542 Stainless Steel

C87300 bronze belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87300 bronze and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 22
5.7 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 350
880 to 1470
Tensile Strength: Yield (Proof), MPa 140
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 970
1430
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 42
39
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 86
880 to 4360
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
31 to 52
Strength to Weight: Bending, points 13
26 to 37
Thermal Diffusivity, mm2/s 8.0
4.3
Thermal Shock Resistance, points 13
29 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 94 to 95.7
3.0 to 5.0
Iron (Fe), % 0 to 0.2
69.6 to 79
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.5 to 5.0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.5
0