MakeItFrom.com
Menu (ESC)

C87400 Brass vs. EN 1.4313 Stainless Steel

C87400 brass belongs to the copper alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
12 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 390
750 to 1000
Tensile Strength: Yield (Proof), MPa 160
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
10
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 44
34
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 120
870 to 2100
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
27 to 36
Strength to Weight: Bending, points 14
23 to 28
Thermal Diffusivity, mm2/s 8.3
6.7
Thermal Shock Resistance, points 14
27 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 79 to 85.5
0
Iron (Fe), % 0
78.5 to 84.2
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 4.0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0