MakeItFrom.com
Menu (ESC)

C87400 Brass vs. EN 1.4568 Stainless Steel

C87400 brass belongs to the copper alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
2.3 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 390
830 to 1620
Tensile Strength: Yield (Proof), MPa 160
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 920
1420
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 27
13
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 44
40
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 120
290 to 5710
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
30 to 58
Strength to Weight: Bending, points 14
25 to 40
Thermal Diffusivity, mm2/s 8.3
4.3
Thermal Shock Resistance, points 14
23 to 46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.8
0.7 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 79 to 85.5
0
Iron (Fe), % 0
70.9 to 76.8
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 4.0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0