MakeItFrom.com
Menu (ESC)

C87400 Brass vs. C26800 Brass

Both C87400 brass and C26800 brass are copper alloys. They have 80% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is C26800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 390
310 to 650

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 920
930
Melting Onset (Solidus), °C 820
900
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 28
120
Thermal Expansion, µm/m-K 18
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
27
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
30

Otherwise Unclassified Properties

Base Metal Price, % relative 27
24
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 310
320

Common Calculations

Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 13
11 to 22
Strength to Weight: Bending, points 14
13 to 21
Thermal Diffusivity, mm2/s 8.3
37
Thermal Shock Resistance, points 14
10 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.8
0
Copper (Cu), % 79 to 85.5
64 to 68.5
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0 to 1.0
0 to 0.15
Silicon (Si), % 2.5 to 4.0
0
Zinc (Zn), % 12 to 16
31 to 36
Residuals, % 0 to 0.8
0 to 0.3