MakeItFrom.com
Menu (ESC)

C87400 Brass vs. C82000 Copper

Both C87400 brass and C82000 copper are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 21
8.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 41
45
Tensile Strength: Ultimate (UTS), MPa 390
350 to 690
Tensile Strength: Yield (Proof), MPa 160
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 920
1090
Melting Onset (Solidus), °C 820
970
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 28
260
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
45
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
46

Otherwise Unclassified Properties

Base Metal Price, % relative 27
60
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 2.7
5.0
Embodied Energy, MJ/kg 44
77
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 120
80 to 1120
Stiffness to Weight: Axial, points 7.4
7.5
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 13
11 to 22
Strength to Weight: Bending, points 14
12 to 20
Thermal Diffusivity, mm2/s 8.3
76
Thermal Shock Resistance, points 14
12 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.8
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 79 to 85.5
95.2 to 97.4
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0 to 1.0
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 2.5 to 4.0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 12 to 16
0 to 0.1
Residuals, % 0 to 0.8
0 to 0.5