MakeItFrom.com
Menu (ESC)

C87400 Brass vs. S13800 Stainless Steel

C87400 brass belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
11 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 390
980 to 1730
Tensile Strength: Yield (Proof), MPa 160
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
15
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 44
46
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1090 to 5490
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
35 to 61
Strength to Weight: Bending, points 14
28 to 41
Thermal Diffusivity, mm2/s 8.3
4.3
Thermal Shock Resistance, points 14
33 to 58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.8
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 79 to 85.5
0
Iron (Fe), % 0
73.6 to 77.3
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 2.5 to 4.0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0