MakeItFrom.com
Menu (ESC)

C87400 Brass vs. S17400 Stainless Steel

C87400 brass belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C87400 brass and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
11 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
75
Tensile Strength: Ultimate (UTS), MPa 390
910 to 1390
Tensile Strength: Yield (Proof), MPa 160
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 170
850
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
14
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
880 to 4060
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
32 to 49
Strength to Weight: Bending, points 14
27 to 35
Thermal Diffusivity, mm2/s 8.3
4.5
Thermal Shock Resistance, points 14
30 to 46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 79 to 85.5
3.0 to 5.0
Iron (Fe), % 0
70.4 to 78.9
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 4.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.8
0