MakeItFrom.com
Menu (ESC)

C87500 Brass vs. AISI 430 Stainless Steel

C87500 brass belongs to the copper alloys classification, while AISI 430 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C87500 brass and the bottom bar is AISI 430 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
24
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 460
500
Tensile Strength: Yield (Proof), MPa 190
260

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 920
1510
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
8.5
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.1
Embodied Energy, MJ/kg 44
30
Embodied Water, L/kg 300
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
100
Resilience: Unit (Modulus of Resilience), kJ/m3 160
170
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 8.3
6.7
Thermal Shock Resistance, points 17
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 79 to 85
0
Iron (Fe), % 0
79.1 to 84
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.0 to 5.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0