MakeItFrom.com
Menu (ESC)

C87600 Bronze vs. EN 1.4526 Stainless Steel

C87600 bronze belongs to the copper alloys classification, while EN 1.4526 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87600 bronze and the bottom bar is EN 1.4526 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
25
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 470
540
Tensile Strength: Yield (Proof), MPa 230
330

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Mechanical, °C 190
880
Melting Completion (Liquidus), °C 970
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 28
30
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 300
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240
280
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
19
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 8.1
8.1
Thermal Shock Resistance, points 17
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 88 to 92.5
0
Iron (Fe), % 0
77.4 to 83.1
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.4
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 4.0 to 7.0
0
Residuals, % 0 to 0.5
0