MakeItFrom.com
Menu (ESC)

C87700 Bronze vs. N08904 Stainless Steel

C87700 bronze belongs to the copper alloys classification, while N08904 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87700 bronze and the bottom bar is N08904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.6
38
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 300
540
Tensile Strength: Yield (Proof), MPa 120
240

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 980
1440
Melting Onset (Solidus), °C 900
1390
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 48
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
32
Density, g/cm3 8.5
8.1
Embodied Carbon, kg CO2/kg material 2.7
5.8
Embodied Energy, MJ/kg 45
79
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6
170
Resilience: Unit (Modulus of Resilience), kJ/m3 64
150
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
19
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 34
3.1
Thermal Shock Resistance, points 11
12

Alloy Composition

Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 87.5 to 90.5
1.0 to 2.0
Iron (Fe), % 0 to 0.5
38.8 to 53
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.25
23 to 28
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.15
0 to 0.045
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 2.0
0
Zinc (Zn), % 7.0 to 9.0
0
Residuals, % 0 to 0.8
0