MakeItFrom.com
Menu (ESC)

C87800 Brass vs. ASTM A387 Grade 22L Class 1

C87800 brass belongs to the copper alloys classification, while ASTM A387 grade 22L class 1 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is ASTM A387 grade 22L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Tensile Strength: Ultimate (UTS), MPa 590
500
Tensile Strength: Yield (Proof), MPa 350
230

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 920
1470
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
3.8
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 44
23
Embodied Water, L/kg 300
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
83
Resilience: Unit (Modulus of Resilience), kJ/m3 540
140
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 8.3
11
Thermal Shock Resistance, points 21
14

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
95.2 to 96.8
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 3.8 to 4.2
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0