MakeItFrom.com
Menu (ESC)

C87800 Brass vs. AWS ER80S-B2

C87800 brass belongs to the copper alloys classification, while AWS ER80S-B2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is AWS ER80S-B2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 590
620
Tensile Strength: Yield (Proof), MPa 350
540

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
3.0
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 44
21
Embodied Water, L/kg 300
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 540
760
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 8.3
11
Thermal Shock Resistance, points 21
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.070 to 0.12
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 80 to 84.2
0 to 0.35
Iron (Fe), % 0 to 0.15
95.2 to 97.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0.4 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0 to 0.2
0 to 0.2
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 3.8 to 4.2
0.4 to 0.7
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0 to 0.5