MakeItFrom.com
Menu (ESC)

C87800 Brass vs. C37000 Muntz Metal

Both C87800 brass and C37000 Muntz Metal are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 75% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is C37000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 25
40
Poisson's Ratio 0.33
0.31
Rockwell B Hardness 86
45
Shear Modulus, GPa 42
39
Tensile Strength: Ultimate (UTS), MPa 590
400
Tensile Strength: Yield (Proof), MPa 350
160

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 920
900
Melting Onset (Solidus), °C 820
890
Specific Heat Capacity, J/kg-K 410
380
Thermal Conductivity, W/m-K 28
120
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
27
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
30

Otherwise Unclassified Properties

Base Metal Price, % relative 27
23
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 300
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 540
120
Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 20
14
Strength to Weight: Bending, points 19
15
Thermal Diffusivity, mm2/s 8.3
39
Thermal Shock Resistance, points 21
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 80 to 84.2
59 to 62
Iron (Fe), % 0 to 0.15
0 to 0.15
Lead (Pb), % 0 to 0.15
0.8 to 1.5
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 3.8 to 4.2
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
36 to 40.2
Residuals, % 0 to 0.5
0 to 0.4