MakeItFrom.com
Menu (ESC)

C87900 Brass vs. ASTM B817 Type I

C87900 brass belongs to the copper alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 25
4.0 to 13
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 480
770 to 960
Tensile Strength: Yield (Proof), MPa 240
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 130
340
Melting Completion (Liquidus), °C 930
1600
Melting Onset (Solidus), °C 900
1550
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 20
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.1
4.4
Embodied Carbon, kg CO2/kg material 2.7
38
Embodied Energy, MJ/kg 46
610
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 270
2310 to 3540
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 17
48 to 60
Strength to Weight: Bending, points 17
42 to 49
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 16
54 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.15
5.5 to 6.8
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 63 to 69.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.4
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.8 to 1.2
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 30 to 36
0
Residuals, % 0
0 to 0.4