MakeItFrom.com
Menu (ESC)

C87900 Brass vs. EN 1.4415 Stainless Steel

C87900 brass belongs to the copper alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
17 to 20
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 480
830 to 930
Tensile Strength: Yield (Proof), MPa 240
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 130
790
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
19
Thermal Expansion, µm/m-K 20
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 46
51
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 270
1350 to 1790
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
29 to 33
Strength to Weight: Bending, points 17
25 to 27
Thermal Diffusivity, mm2/s 37
5.1
Thermal Shock Resistance, points 16
30 to 34

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 63 to 69.2
0
Iron (Fe), % 0 to 0.4
75.9 to 82.4
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 0.5
4.5 to 6.5
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.8 to 1.2
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 30 to 36
0