MakeItFrom.com
Menu (ESC)

C87900 Brass vs. EN 1.4736 Stainless Steel

C87900 brass belongs to the copper alloys classification, while EN 1.4736 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
28
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 480
580
Tensile Strength: Yield (Proof), MPa 240
310

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
1000
Melting Completion (Liquidus), °C 930
1420
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 17
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.0
Density, g/cm3 8.1
7.6
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 46
35
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 270
250
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 37
5.6
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 0 to 0.15
1.7 to 2.1
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 63 to 69.2
0
Iron (Fe), % 0 to 0.4
77 to 81.1
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.8 to 1.2
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 30 to 36
0