MakeItFrom.com
Menu (ESC)

C87900 Brass vs. SAE-AISI 1017 Steel

C87900 brass belongs to the copper alloys classification, while SAE-AISI 1017 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is SAE-AISI 1017 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
20 to 30
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 480
420 to 460
Tensile Strength: Yield (Proof), MPa 240
220 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 930
1470
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
53
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 17
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 46
18
Embodied Water, L/kg 320
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 270
130 to 400
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17
15 to 16
Strength to Weight: Bending, points 17
16 to 17
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 16
13 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.15 to 0.2
Copper (Cu), % 63 to 69.2
0
Iron (Fe), % 0 to 0.4
99.11 to 99.55
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.8 to 1.2
0
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 30 to 36
0