MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C61800 Bronze

Both C87900 brass and C61800 bronze are copper alloys. They have 66% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
26
Poisson's Ratio 0.31
0.34
Rockwell B Hardness 70
89
Shear Modulus, GPa 41
44
Tensile Strength: Ultimate (UTS), MPa 480
740
Tensile Strength: Yield (Proof), MPa 240
310

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 130
220
Melting Completion (Liquidus), °C 930
1050
Melting Onset (Solidus), °C 900
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 120
64
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
13
Electrical Conductivity: Equal Weight (Specific), % IACS 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
150
Resilience: Unit (Modulus of Resilience), kJ/m3 270
420
Stiffness to Weight: Axial, points 7.3
7.5
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 37
18
Thermal Shock Resistance, points 16
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.15
8.5 to 11
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 63 to 69.2
86.9 to 91
Iron (Fe), % 0 to 0.4
0.5 to 1.5
Lead (Pb), % 0 to 0.25
0 to 0.020
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.8 to 1.2
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 30 to 36
0 to 0.020
Residuals, % 0
0 to 0.5