MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C62500 Bronze

Both C87900 brass and C62500 bronze are copper alloys. They have 66% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
1.0
Poisson's Ratio 0.31
0.34
Rockwell B Hardness 70
29
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 480
690
Tensile Strength: Yield (Proof), MPa 240
410

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 130
230
Melting Completion (Liquidus), °C 930
1050
Melting Onset (Solidus), °C 900
1050
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 120
47
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
10
Electrical Conductivity: Equal Weight (Specific), % IACS 17
11

Otherwise Unclassified Properties

Base Metal Price, % relative 24
26
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 46
55
Embodied Water, L/kg 320
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 270
750
Stiffness to Weight: Axial, points 7.3
7.8
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 16
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.15
12.5 to 13.5
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 63 to 69.2
78.5 to 84
Iron (Fe), % 0 to 0.4
3.5 to 5.5
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.8 to 1.2
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 30 to 36
0
Residuals, % 0
0 to 0.5