MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C90200 Bronze

Both C87900 brass and C90200 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
30
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 480
260
Tensile Strength: Yield (Proof), MPa 240
110

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 130
180
Melting Completion (Liquidus), °C 930
1050
Melting Onset (Solidus), °C 900
880
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 120
62
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
13
Electrical Conductivity: Equal Weight (Specific), % IACS 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 24
34
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 46
53
Embodied Water, L/kg 320
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
63
Resilience: Unit (Modulus of Resilience), kJ/m3 270
55
Stiffness to Weight: Axial, points 7.3
7.0
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 17
8.3
Strength to Weight: Bending, points 17
10
Thermal Diffusivity, mm2/s 37
19
Thermal Shock Resistance, points 16
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.15
0 to 0.0050
Antimony (Sb), % 0 to 0.050
0 to 0.2
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 63 to 69.2
91 to 94
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0 to 0.25
0 to 0.3
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Phosphorus (P), % 0 to 0.010
0 to 0.050
Silicon (Si), % 0.8 to 1.2
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 0 to 0.25
6.0 to 8.0
Zinc (Zn), % 30 to 36
0 to 0.5
Residuals, % 0
0 to 0.6