MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C96300 Copper-nickel

Both C87900 brass and C96300 copper-nickel are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
130
Elongation at Break, % 25
11
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 41
49
Tensile Strength: Ultimate (UTS), MPa 480
580
Tensile Strength: Yield (Proof), MPa 240
430

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 130
240
Melting Completion (Liquidus), °C 930
1200
Melting Onset (Solidus), °C 900
1150
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 120
37
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
42
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.7
5.1
Embodied Energy, MJ/kg 46
76
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
59
Resilience: Unit (Modulus of Resilience), kJ/m3 270
720
Stiffness to Weight: Axial, points 7.3
8.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
17
Thermal Diffusivity, mm2/s 37
10
Thermal Shock Resistance, points 16
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 63 to 69.2
72.3 to 80.8
Iron (Fe), % 0 to 0.4
0.5 to 1.5
Lead (Pb), % 0 to 0.25
0 to 0.010
Manganese (Mn), % 0 to 0.15
0.25 to 1.5
Nickel (Ni), % 0 to 0.5
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0.8 to 1.2
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.020
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 30 to 36
0
Residuals, % 0
0 to 0.5