MakeItFrom.com
Menu (ESC)

C87900 Brass vs. C96900 Copper-nickel

Both C87900 brass and C96900 copper-nickel are copper alloys. They have 67% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
4.5
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
45
Tensile Strength: Ultimate (UTS), MPa 480
850
Tensile Strength: Yield (Proof), MPa 240
830

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 130
210
Melting Completion (Liquidus), °C 930
1060
Melting Onset (Solidus), °C 900
960
Specific Heat Capacity, J/kg-K 390
380
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
39
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.6
Embodied Energy, MJ/kg 46
72
Embodied Water, L/kg 320
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
38
Resilience: Unit (Modulus of Resilience), kJ/m3 270
2820
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
27
Strength to Weight: Bending, points 17
23
Thermal Shock Resistance, points 16
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 63 to 69.2
73.6 to 78
Iron (Fe), % 0 to 0.4
0 to 0.5
Lead (Pb), % 0 to 0.25
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.15
0.050 to 0.3
Nickel (Ni), % 0 to 0.5
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.8 to 1.2
0 to 0.3
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 0.25
7.5 to 8.5
Zinc (Zn), % 30 to 36
0 to 0.5
Residuals, % 0
0 to 0.5