MakeItFrom.com
Menu (ESC)

C87900 Brass vs. S34565 Stainless Steel

C87900 brass belongs to the copper alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87900 brass and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 25
39
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 70
88
Shear Modulus, GPa 41
80
Tensile Strength: Ultimate (UTS), MPa 480
900
Tensile Strength: Yield (Proof), MPa 240
470

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 930
1420
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
5.3
Embodied Energy, MJ/kg 46
73
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
300
Resilience: Unit (Modulus of Resilience), kJ/m3 270
540
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
32
Strength to Weight: Bending, points 17
26
Thermal Diffusivity, mm2/s 37
3.2
Thermal Shock Resistance, points 16
22

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 63 to 69.2
0
Iron (Fe), % 0 to 0.4
43.2 to 51.6
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.15
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.5
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0 to 0.010
0 to 0.030
Silicon (Si), % 0.8 to 1.2
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 30 to 36
0