MakeItFrom.com
Menu (ESC)

C89320 Bronze vs. S39274 Stainless Steel

C89320 bronze belongs to the copper alloys classification, while S39274 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C89320 bronze and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 17
17
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 270
900
Tensile Strength: Yield (Proof), MPa 140
620

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 930
1430
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 56
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 15
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
24
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 3.5
4.3
Embodied Energy, MJ/kg 56
60
Embodied Water, L/kg 490
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
140
Resilience: Unit (Modulus of Resilience), kJ/m3 93
940
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5
32
Strength to Weight: Bending, points 10
26
Thermal Diffusivity, mm2/s 17
4.2
Thermal Shock Resistance, points 10
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Bismuth (Bi), % 4.0 to 6.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 87 to 91
0.2 to 0.8
Iron (Fe), % 0 to 0.2
57 to 65.6
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 1.0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.3
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.080
0 to 0.020
Tin (Sn), % 5.0 to 7.0
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0