MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. ASTM A372 Grade E Steel

C90200 bronze belongs to the copper alloys classification, while ASTM A372 grade E steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is ASTM A372 grade E steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
200 to 280
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
20 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 260
650 to 910
Tensile Strength: Yield (Proof), MPa 110
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 62
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.4
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.5
Embodied Energy, MJ/kg 53
20
Embodied Water, L/kg 370
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 55
500 to 810
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
23 to 32
Strength to Weight: Bending, points 10
21 to 27
Thermal Diffusivity, mm2/s 19
12
Thermal Shock Resistance, points 9.5
19 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.25 to 0.35
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
97 to 98.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.015
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0