MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. EN 1.4458 Stainless Steel

C90200 bronze belongs to the copper alloys classification, while EN 1.4458 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is EN 1.4458 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
150
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 260
510
Tensile Strength: Yield (Proof), MPa 110
190

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1050
1420
Melting Onset (Solidus), °C 880
1370
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 62
16
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
30
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 3.3
5.4
Embodied Energy, MJ/kg 53
75
Embodied Water, L/kg 370
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
140
Resilience: Unit (Modulus of Resilience), kJ/m3 55
89
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
17
Strength to Weight: Bending, points 10
18
Thermal Diffusivity, mm2/s 19
4.2
Thermal Shock Resistance, points 9.5
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 91 to 94
0 to 2.0
Iron (Fe), % 0 to 0.2
40.2 to 53
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0 to 0.5
26 to 30
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0