MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. SAE-AISI 1086 Steel

C90200 bronze belongs to the copper alloys classification, while SAE-AISI 1086 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is SAE-AISI 1086 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
220 to 260
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
72
Tensile Strength: Ultimate (UTS), MPa 260
760 to 870
Tensile Strength: Yield (Proof), MPa 110
480 to 580

Thermal Properties

Latent Heat of Fusion, J/g 200
240
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 880
1410
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 62
50
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.4
Embodied Energy, MJ/kg 53
19
Embodied Water, L/kg 370
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
79 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 55
610 to 890
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
27 to 31
Strength to Weight: Bending, points 10
24 to 26
Thermal Diffusivity, mm2/s 19
14
Thermal Shock Resistance, points 9.5
26 to 30

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.8 to 0.93
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
98.5 to 98.9
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0