MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. SAE-AISI 4130 Steel

C90200 bronze belongs to the copper alloys classification, while SAE-AISI 4130 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is SAE-AISI 4130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
200 to 300
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
13 to 26
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 260
530 to 1040
Tensile Strength: Yield (Proof), MPa 110
440 to 980

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 62
43
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.4
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.5
Embodied Energy, MJ/kg 53
20
Embodied Water, L/kg 370
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
83 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 55
500 to 2550
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
19 to 37
Strength to Weight: Bending, points 10
19 to 29
Thermal Diffusivity, mm2/s 19
12
Thermal Shock Resistance, points 9.5
16 to 31

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
97.3 to 98.2
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.4 to 0.6
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0