MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. C15000 Copper

Both C90200 bronze and C15000 copper are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is C15000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 30
13 to 54
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 260
200 to 460
Tensile Strength: Yield (Proof), MPa 110
45 to 460

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 1050
1080
Melting Onset (Solidus), °C 880
980
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 62
370
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
93
Electrical Conductivity: Equal Weight (Specific), % IACS 13
93

Otherwise Unclassified Properties

Base Metal Price, % relative 34
31
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 3.3
2.7
Embodied Energy, MJ/kg 53
43
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
19 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 55
8.7 to 910
Stiffness to Weight: Axial, points 7.0
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.3
6.2 to 14
Strength to Weight: Bending, points 10
8.5 to 15
Thermal Diffusivity, mm2/s 19
110
Thermal Shock Resistance, points 9.5
7.3 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 91 to 94
99.8 to 99.9
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0 to 0.3
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0.1 to 0.2
Residuals, % 0 to 0.6
0