MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. C67400 Bronze

Both C90200 bronze and C67400 bronze are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 30
22 to 28
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 260
480 to 610
Tensile Strength: Yield (Proof), MPa 110
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 1050
890
Melting Onset (Solidus), °C 880
870
Specific Heat Capacity, J/kg-K 370
400
Thermal Conductivity, W/m-K 62
100
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
23
Electrical Conductivity: Equal Weight (Specific), % IACS 13
26

Otherwise Unclassified Properties

Base Metal Price, % relative 34
23
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 53
48
Embodied Water, L/kg 370
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 55
300 to 660
Stiffness to Weight: Axial, points 7.0
7.5
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.3
17 to 22
Strength to Weight: Bending, points 10
17 to 20
Thermal Diffusivity, mm2/s 19
32
Thermal Shock Resistance, points 9.5
16 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0.5 to 2.0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 91 to 94
57 to 60
Iron (Fe), % 0 to 0.2
0 to 0.35
Lead (Pb), % 0 to 0.3
0 to 0.5
Manganese (Mn), % 0
2.0 to 3.5
Nickel (Ni), % 0 to 0.5
0 to 0.25
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0.5 to 1.5
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 6.0 to 8.0
0 to 0.3
Zinc (Zn), % 0 to 0.5
31.1 to 40
Residuals, % 0 to 0.6
0 to 0.5