MakeItFrom.com
Menu (ESC)

C90300 Bronze vs. AISI 440C Stainless Steel

C90300 bronze belongs to the copper alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90300 bronze and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
2.0 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 330
710 to 1970
Tensile Strength: Yield (Proof), MPa 150
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 1000
1480
Melting Onset (Solidus), °C 850
1370
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
22
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.0
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.2
Embodied Energy, MJ/kg 56
31
Embodied Water, L/kg 370
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
39 to 88
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
26 to 71
Strength to Weight: Bending, points 12
23 to 46
Thermal Diffusivity, mm2/s 23
6.0
Thermal Shock Resistance, points 12
26 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
78 to 83.1
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 7.5 to 9.0
0
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.6
0