MakeItFrom.com
Menu (ESC)

C90300 Bronze vs. C82000 Copper

Both C90300 bronze and C82000 copper are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C90300 bronze and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 22
8.0 to 20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
45
Tensile Strength: Ultimate (UTS), MPa 330
350 to 690
Tensile Strength: Yield (Proof), MPa 150
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 190
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 1000
1090
Melting Onset (Solidus), °C 850
970
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 75
260
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
45
Electrical Conductivity: Equal Weight (Specific), % IACS 12
46

Otherwise Unclassified Properties

Base Metal Price, % relative 33
60
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.4
5.0
Embodied Energy, MJ/kg 56
77
Embodied Water, L/kg 370
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 110
80 to 1120
Stiffness to Weight: Axial, points 7.0
7.5
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11
11 to 22
Strength to Weight: Bending, points 12
12 to 20
Thermal Diffusivity, mm2/s 23
76
Thermal Shock Resistance, points 12
12 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0 to 0.1
Antimony (Sb), % 0 to 0.2
0
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 86 to 89
95.2 to 97.4
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 0.3
0 to 0.020
Nickel (Ni), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.15
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 7.5 to 9.0
0 to 0.1
Zinc (Zn), % 3.0 to 5.0
0 to 0.1
Residuals, % 0 to 0.6
0 to 0.5