MakeItFrom.com
Menu (ESC)

C90400 Bronze vs. Nickel 718

C90400 bronze belongs to the copper alloys classification, while nickel 718 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C90400 bronze and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 24
12 to 50
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
75
Tensile Strength: Ultimate (UTS), MPa 310
930 to 1530
Tensile Strength: Yield (Proof), MPa 180
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 990
1340
Melting Onset (Solidus), °C 850
1260
Specific Heat Capacity, J/kg-K 370
450
Thermal Conductivity, W/m-K 75
11
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
75
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 3.5
13
Embodied Energy, MJ/kg 56
190
Embodied Water, L/kg 370
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 150
660 to 4560
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 10
31 to 51
Strength to Weight: Bending, points 12
25 to 35
Thermal Diffusivity, mm2/s 23
3.0
Thermal Shock Resistance, points 11
27 to 44

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0.2 to 0.8
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0 to 0.0060
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 86 to 89
0 to 0.3
Iron (Fe), % 0 to 0.4
11.1 to 24.6
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 1.0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0 to 0.050
0 to 0.015
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0.1 to 0.65
0 to 0.015
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0
0.65 to 1.2
Zinc (Zn), % 1.0 to 5.0
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0