MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. 295.0 Aluminum

C90500 gun metal belongs to the copper alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 20
2.0 to 7.2
Fatigue Strength, MPa 90
44 to 55
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 320
230 to 280
Tensile Strength: Yield (Proof), MPa 160
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 190
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1000
640
Melting Onset (Solidus), °C 850
530
Solidification (Pattern Maker's) Shrinkage, % 1.6
1.3
Specific Heat Capacity, J/kg-K 370
880
Thermal Conductivity, W/m-K 75
140
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
35
Electrical Conductivity: Equal Weight (Specific), % IACS 11
100

Otherwise Unclassified Properties

Base Metal Price, % relative 35
10
Density, g/cm3 8.7
3.0
Embodied Carbon, kg CO2/kg material 3.6
7.9
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 390
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 110
77 to 340
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 10
21 to 26
Strength to Weight: Bending, points 12
27 to 32
Thermal Diffusivity, mm2/s 23
54
Thermal Shock Resistance, points 12
9.8 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
91.4 to 95.3
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 86 to 89
4.0 to 5.0
Iron (Fe), % 0 to 0.2
0 to 1.0
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0.7 to 1.5
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 1.0 to 3.0
0 to 0.35
Residuals, % 0
0 to 0.15