MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. ASTM A182 Grade F6b

C90500 gun metal belongs to the copper alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
18
Fatigue Strength, MPa 90
440
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 320
850
Tensile Strength: Yield (Proof), MPa 160
710

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 35
8.0
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.2
Embodied Energy, MJ/kg 59
30
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
140
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1280
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
30
Strength to Weight: Bending, points 12
26
Thermal Diffusivity, mm2/s 23
6.7
Thermal Shock Resistance, points 12
31

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 86 to 89
0 to 0.5
Iron (Fe), % 0 to 0.2
81.2 to 87.1
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 1.0
1.0 to 2.0
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.020
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0