MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. EN 1.4313 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
12 to 17
Fatigue Strength, MPa 90
340 to 510
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 320
750 to 1000
Tensile Strength: Yield (Proof), MPa 160
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 35
10
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.4
Embodied Energy, MJ/kg 59
34
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 110
870 to 2100
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
27 to 36
Strength to Weight: Bending, points 12
23 to 28
Thermal Diffusivity, mm2/s 23
6.7
Thermal Shock Resistance, points 12
27 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
78.5 to 84.2
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 0 to 1.0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0