MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. C48200 Brass

Both C90500 gun metal and C48200 brass are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 20
15 to 40
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 320
400 to 500
Tensile Strength: Yield (Proof), MPa 160
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 1000
900
Melting Onset (Solidus), °C 850
890
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 75
120
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
26
Electrical Conductivity: Equal Weight (Specific), % IACS 11
29

Otherwise Unclassified Properties

Base Metal Price, % relative 35
23
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 59
47
Embodied Water, L/kg 390
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 110
120 to 500
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10
14 to 17
Strength to Weight: Bending, points 12
15 to 17
Thermal Diffusivity, mm2/s 23
38
Thermal Shock Resistance, points 12
13 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 86 to 89
59 to 62
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 0.3
0.4 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0.5 to 1.0
Zinc (Zn), % 1.0 to 3.0
35.5 to 40.1
Residuals, % 0 to 0.3
0 to 0.4