MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. C63200 Bronze

Both C90500 gun metal and C63200 bronze are copper alloys. They have 81% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
17 to 18
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 320
640 to 710
Tensile Strength: Yield (Proof), MPa 160
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 1000
1060
Melting Onset (Solidus), °C 850
1040
Specific Heat Capacity, J/kg-K 370
440
Thermal Conductivity, W/m-K 75
35
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 35
29
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 3.6
3.4
Embodied Energy, MJ/kg 59
55
Embodied Water, L/kg 390
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 110
400 to 510
Stiffness to Weight: Axial, points 6.9
7.9
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 10
21 to 24
Strength to Weight: Bending, points 12
20 to 21
Thermal Diffusivity, mm2/s 23
9.6
Thermal Shock Resistance, points 12
22 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
8.7 to 9.5
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 86 to 89
78.8 to 82.6
Iron (Fe), % 0 to 0.2
3.5 to 4.3
Lead (Pb), % 0 to 0.3
0 to 0.020
Manganese (Mn), % 0
1.2 to 2.0
Nickel (Ni), % 0 to 1.0
4.0 to 4.8
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0 to 0.5