MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. N08330 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while N08330 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is N08330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
34
Fatigue Strength, MPa 90
190
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 320
550
Tensile Strength: Yield (Proof), MPa 160
230

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 1000
1390
Melting Onset (Solidus), °C 850
1340
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 35
32
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 3.6
5.4
Embodied Energy, MJ/kg 59
77
Embodied Water, L/kg 390
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
150
Resilience: Unit (Modulus of Resilience), kJ/m3 110
140
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
19
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 23
3.1
Thermal Shock Resistance, points 12
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 86 to 89
0 to 1.0
Iron (Fe), % 0 to 0.2
38.3 to 48.3
Lead (Pb), % 0 to 0.3
0 to 0.0050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 1.0
34 to 37
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0.75 to 1.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0 to 0.025
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0