MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. S13800 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
11 to 18
Fatigue Strength, MPa 90
410 to 870
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 320
980 to 1730
Tensile Strength: Yield (Proof), MPa 160
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 850
1410
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 75
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 35
15
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.6
3.4
Embodied Energy, MJ/kg 59
46
Embodied Water, L/kg 390
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1090 to 5490
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
35 to 61
Strength to Weight: Bending, points 12
28 to 41
Thermal Diffusivity, mm2/s 23
4.3
Thermal Shock Resistance, points 12
33 to 58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0.9 to 1.4
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
73.6 to 77.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 1.0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 1.5
0 to 0.010
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sulfur (S), % 0 to 0.050
0 to 0.0080
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0