MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. S42300 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
9.1
Fatigue Strength, MPa 90
440
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 320
1100
Tensile Strength: Yield (Proof), MPa 160
850

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 1000
1470
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 75
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 11
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 35
9.5
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.2
Embodied Energy, MJ/kg 59
44
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
93
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1840
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
39
Strength to Weight: Bending, points 12
30
Thermal Diffusivity, mm2/s 23
6.8
Thermal Shock Resistance, points 12
40

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.27 to 0.32
Chromium (Cr), % 0
11 to 12
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
82 to 85.1
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 1.0
0 to 0.5
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 9.0 to 11
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0