MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. S44660 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 20
20
Fatigue Strength, MPa 90
330
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 320
660
Tensile Strength: Yield (Proof), MPa 160
510

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 850
1410
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 35
21
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.6
4.3
Embodied Energy, MJ/kg 59
61
Embodied Water, L/kg 390
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110
640
Stiffness to Weight: Axial, points 6.9
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
24
Strength to Weight: Bending, points 12
22
Thermal Diffusivity, mm2/s 23
4.5
Thermal Shock Resistance, points 12
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
60.4 to 71
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 1.0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0