MakeItFrom.com
Menu (ESC)

C90800 Bronze vs. EN 1.7335 Steel

C90800 bronze belongs to the copper alloys classification, while EN 1.7335 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90800 bronze and the bottom bar is EN 1.7335 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
150 to 160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
21 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 330
500 to 520
Tensile Strength: Yield (Proof), MPa 170
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 990
1470
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 68
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.8
1.6
Embodied Energy, MJ/kg 62
21
Embodied Water, L/kg 410
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
91 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 140
210 to 260
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
18
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 21
12
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.080 to 0.18
Chromium (Cr), % 0
0.7 to 1.2
Copper (Cu), % 85.3 to 89
0 to 0.3
Iron (Fe), % 0 to 0.15
96.4 to 98.4
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.3
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 11 to 13
0
Zinc (Zn), % 0 to 0.25
0