MakeItFrom.com
Menu (ESC)

C90800 Bronze vs. C14700 Copper

Both C90800 bronze and C14700 copper are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C90800 bronze and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 13
9.1 to 35
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 330
240 to 320
Tensile Strength: Yield (Proof), MPa 170
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 990
1080
Melting Onset (Solidus), °C 870
1070
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 68
370
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
95
Electrical Conductivity: Equal Weight (Specific), % IACS 11
96

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.8
2.6
Embodied Energy, MJ/kg 62
41
Embodied Water, L/kg 410
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 140
31 to 280
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11
7.3 to 10
Strength to Weight: Bending, points 12
9.5 to 12
Thermal Diffusivity, mm2/s 21
110
Thermal Shock Resistance, points 12
8.4 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 85.3 to 89
99.395 to 99.798
Iron (Fe), % 0 to 0.15
0
Lead (Pb), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.3
0.0020 to 0.0050
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0.2 to 0.5
Tin (Sn), % 11 to 13
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.1