MakeItFrom.com
Menu (ESC)

C90900 Bronze vs. AISI 409Cb Stainless Steel

C90900 bronze belongs to the copper alloys classification, while AISI 409Cb stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90900 bronze and the bottom bar is AISI 409Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
24
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 280
420
Tensile Strength: Yield (Proof), MPa 140
200

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 160
710
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 65
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
8.5
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.2
Embodied Energy, MJ/kg 64
31
Embodied Water, L/kg 410
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
83
Resilience: Unit (Modulus of Resilience), kJ/m3 89
100
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8
15
Strength to Weight: Bending, points 11
16
Thermal Diffusivity, mm2/s 21
6.7
Thermal Shock Resistance, points 10
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.15
84.9 to 89.5
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.75
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 12 to 14
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0