MakeItFrom.com
Menu (ESC)

C90900 Bronze vs. CC140C Copper

Both C90900 bronze and CC140C copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 88% of their average alloy composition in common.

For each property being compared, the top bar is C90900 bronze and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
110
Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 15
11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 280
340
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 980
1100
Melting Onset (Solidus), °C 820
1040
Specific Heat Capacity, J/kg-K 360
390
Thermal Conductivity, W/m-K 65
310
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
77
Electrical Conductivity: Equal Weight (Specific), % IACS 11
78

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.9
2.6
Embodied Energy, MJ/kg 64
41
Embodied Water, L/kg 410
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
34
Resilience: Unit (Modulus of Resilience), kJ/m3 89
220
Stiffness to Weight: Axial, points 6.8
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.8
10
Strength to Weight: Bending, points 11
12
Thermal Diffusivity, mm2/s 21
89
Thermal Shock Resistance, points 10
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 86 to 89
98.8 to 99.6
Iron (Fe), % 0 to 0.15
0
Lead (Pb), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 12 to 14
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0