MakeItFrom.com
Menu (ESC)

C90900 Bronze vs. S46800 Stainless Steel

C90900 bronze belongs to the copper alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90900 bronze and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 280
470
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
920
Melting Completion (Liquidus), °C 980
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 65
23
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.6
Embodied Energy, MJ/kg 64
37
Embodied Water, L/kg 410
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
98
Resilience: Unit (Modulus of Resilience), kJ/m3 89
130
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8
17
Strength to Weight: Bending, points 11
18
Thermal Diffusivity, mm2/s 21
6.1
Thermal Shock Resistance, points 10
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.15
76.5 to 81.8
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 12 to 14
0
Titanium (Ti), % 0
0.070 to 0.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0