MakeItFrom.com
Menu (ESC)

C91000 Bronze vs. EN 1.4335 Stainless Steel

C91000 bronze belongs to the copper alloys classification, while EN 1.4335 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C91000 bronze and the bottom bar is EN 1.4335 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0
45
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 39
79
Tensile Strength: Ultimate (UTS), MPa 230
570
Tensile Strength: Yield (Proof), MPa 150
230

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 960
1410
Melting Onset (Solidus), °C 820
1370
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 64
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
25
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 4.1
4.4
Embodied Energy, MJ/kg 67
62
Embodied Water, L/kg 420
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
210
Resilience: Unit (Modulus of Resilience), kJ/m3 100
130
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.5
20
Strength to Weight: Bending, points 9.7
19
Thermal Diffusivity, mm2/s 20
3.7
Thermal Shock Resistance, points 8.8
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 84 to 86
0
Iron (Fe), % 0 to 0.1
49.4 to 56
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.8
20 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.25
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 14 to 16
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.6
0